The Synthesis of a Novel Cyclo-Se₃-Bridged Trinuclear Ru Complex

Shiho Hatemata, Hiroyasu Sugiyama, Jun Mizutani, and Kazuko Matsumoto*[a]

Abstract: The reaction of $[\{RuCl[P(OCH_3)_3]_2\}_2(\mu-Se_2)(\mu-Cl)_2]$ with four equivalents of NaPF₆ gave $[\{Ru[P(OCH_3)_3]_2(CH_3CN)_3\}_2(\mu-Se_2)](PF_6)_3$ and $[\{Ru[P(OCH_3)_3]_2-H_6\}_2(\mu-Se_2)](PF_6)_3$ $(CH_3CN)(\mu-Cl)_2(\mu-cyclo-Se_3)\{Ru[P(OCH_3)_3]_2(CH_3CN)_3\}](PF_6)_4$. The former is a Ru^{II}Ru^{III} mixed-valent paramagnetic compound. The X-ray structural analysis of the latter compound revealed that it has a novel μ -cyclo-Se₃ neutral ligand and three Ru^{II} atoms.

Keywords: bridging ligands • cyclotriselenium ligand · dinuclear RuIII complex · selenium · trinuclear RuII complex

Introduction

Chalcogen ligands have been recognized as an important group, especially when they are in polymetallic complexes such as the iron-sulfur clusters in nitrogenase^[1] and synthetic polymetallic chalcogenide clusters. The remarkably strong donating ability of inorganic sulfur ligands and their structural diversity in bridged-metal centers have for many years tempted synthetic chemists to synthesize functionally and structurally novel cluster complexes.[2] The syntheses and reactions of polymetallic complexes containing heavier chalcogens have also been a research target.[3] The larger ionic radii, the ligands' softer properties, and the increased propensity for catenation would cause a significant difference in the reactivity of the sulfur-analogue complexes. Since the first report of the disulfide-bridged RuIII dinuclear complex, $[\{RuCl[P(OCH_3)_3]_2\}_2(\mu-S_2)(\mu-Cl)_2]$ (1), we have developed

novel reactions on the bridging disulfide ligand of 1 and related complexes; [4, 5] for example reactions with alkenes and ketones that involve C-H bond activation and C-S bond

[a] Prof. K. Matsumoto, S. Hatemata, H. Sugiyama, J. Mizutani Department of Chemistry Advanced Research Center for Science and Engineering

Waseda University

3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555 (Japan) and Japan Science and Technology Corporation

4-1-8 Honmachi, Kawaguchi, Saitama 332.0012 (Japan)

Fax: (+81)3-5273-3489 E-mail: kmatsu@waseda.jp

resulted in the formation of [{Ru[P(OCH₃)₃]₂(CH₃CN)}₂- $(\mu - Se_2)(\mu - Cl)_2$ (CF₃SO₃)₂ **(3)**, and $[\{Ru[P(OCH_3)_3]_2 (CH_3CN)_3$ ₂ $(\mu$ -Se₂)] $(CF_3SO_3)_4$ (4), similar to the sulfur analogue.[10] Although the elemental-analysis data of 3 were satisfactory, several unassignable peaks were observed in the ¹H and ³¹P{¹H} NMR spectra. In solution, **3** seems unstable and equilibrates with a couple of unknown species by disproportionation. Nevertheless, in situ prepared 3 could be treated with 2,3-dimethylbutadiene to give a complex carrying a bridging ligand of a C₄S₂ six-membered ring, $[\{Ru[P(OCH_3)_3]_2(CH_3CN)\}_2\{\mu-SeCH_2C(CH_3)=C(CH_3)CH_2Se\} (\mu\text{-Cl})_2$ (CF₃SO₃)₂ (5).^[11] This reaction parallels that of the sulfur analogue.[12]

formation on the bridging disulfide ligand. [6-8] These reactions

clearly show that, under certain conditions, a disulfide ligand

can act like a transition metal center in organometallic

complexes. This opens up a new area both in sulfur chemistry

and organometallic chemistry. Recently, we prepared the

selenium analogue of 1, $[\{RuCl[P(OCH_3)_3]_2\}_2(\mu-Se_2)(\mu-Cl)_2]$

(2) (Scheme 1),^[9] and observed substitution reactions of the

terminal and bridging chloride ligands similar to those in 1. In

the present paper, the synthesis of the cyclo-Se₃-bridged

trinuclear ruthenium complex prepared from 2 is reported.

Results and Discussion

Treatment of 2 with an appropriate equivalent of AgCF₃SO₃

The reaction is unique to 2, and is not observed for 1.

The reaction of 2 with four equivalents of NaPF₆ in CH₃CN/ H_2O gave a mixture of $[\{Ru[P(OCH_3)_3]_2(CH_3CN)_3\}_2(\mu-Se_2)]$ -(PF₆)₃ (6) and an unknown diamagnetic complex, after standard workup and recrystallization by layer diffusion of Et₂O onto a solution of the crude product in CH₃CN (Scheme 1).[13] In the 31P{1H} NMR spectrum of the recrystallized products, a septet signal from the PF₆⁻ counter anion at

Scheme 1.

 $\delta = -143.1$ ($J_{PF} = 704$ Hz) and three signals (doublets at $\delta = 120.9$ and 123.8 ($J_{PP} = 71$ Hz) and a singlet at $\delta = 122.7$) are observed.

Since the paramagnetic compound **6** does not give any $^{31}P\{^{1}H\}$ NMR signal, the three signals must correspond to the unknown complex. The three signals are always observed, and the total intensity relative to that of the PF₆ anion varies from batch to batch. X-ray diffraction studies were carried out to determine the structures of **6** and the unknown complex, and the latter revealed the novel cyclo-Se₃ structure of the complex, $[\{Ru[P(OCH_3)_3]_2(CH_3CN)(\mu\text{-Cl})\}_2(\mu\text{-}cyclo\text{-Se}_3)-\{Ru[P(OCH_3)_3]_2(CH_3CN)_3\}](PF_6)_4$ (**7**). In the $^{31}P\{^{1}H\}$ NMR spectrum, the two doublets are assigned to the two nonequivalent $P(OCH_3)_2$ ligands on the chloride-bridged two Ru atoms, whereas the one singlet must arise from the two equivalent $P(OCH_3)_3$ ligands on the remaining Ru atom.

Figure 1 shows the structure of **6**. The Se–Se bond length in **6** (2.2623(12) Å) is similar to that in the starting complex **2**

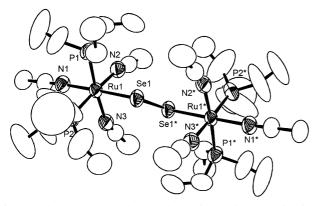


Figure 1. The structure of the complex cation $\bf 6$ drawn at the 50% probability level. Methyl H atoms are omitted for clarity.

(2.27 Å). [9] The structure of **7** is shown in Figure 2, in which the novel *cyclo*-Se₃ group bridges the three Ru atoms. Two of the three Ru atoms are further doubly bridged by two chloride ligands. The three Se–Se bond lengths in the *cyclo*-Se₃ are approximately the same (2.4356(7), 2.4452(8), and 2.4454(8) Å), and are longer than the Se–Se bond in the starting complex **2** (2.27 Å). [9] The major bond distances in **6** and **7** are listed in Tables 1 and 2, respectively. The oxidation states of the three Ru atoms and the formal charge of the *cyclo*-Se₃ group can be assigned as three Ru^{II} and neutral Se₃ by taking into account the charge of the complex cation of **7**. Considering the almost uniform Ru–P bond lengths for all

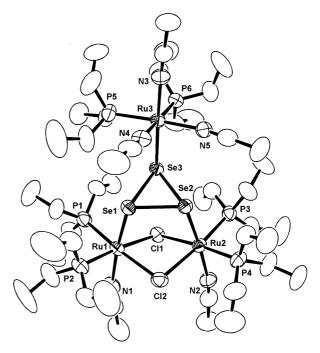


Figure 2. The structure of the complex cation of 7 drawn at the 50% probability level. Methyl H atoms are omitted for clarity.

Table 1. Selected structural parameters of 6.

Bond lengths [Å]			
Ru1-P1	2.2310(18)	Ru1-P2	2.225(2)
Ru1-Se1	2.4379(7)		
Se1-Se1*	2.2623(12)	Ru1-N1	2.078(6)
Ru1-N2	2.140(6)	Ru1-N3	2.142(6)
Bond angles [°]			
Ru1-Se1-Se1*	104.90(4)		

Table 2. Selected structural parameters of 7.

Bond lengths [Å]			
Ru1-Cl1	2.4480(14)	Ru1-Cl2	2.4990(15)
Ru2-Cl1	2.4674(14)	Ru2-Cl2	2.4965(15)
Ru1-P1	2.2433(16)	Ru1-P2	2.2353(16)
Ru2-P3	2.2403(16)	Ru2-P4	2.2463(16)
Ru3-P5	2.2514(17)	Ru3-P6	2.2569(15)
Ru1-Se1	2.3623(7)	Se1-Se2	2.4452(8)
Ru2-Se2	2.3581(7)	Se2-Se3	2.4356(7)
Ru3-Se3	2.3967(7)	Se3-Se1	2.4454(8)
Ru1-N1	2.063(5)	Ru2-N2	2.069(5)
Ru3-N3	2.067(5)	Ru3-N4	2.113(5)
Ru3-N5	2.118(5)		
Bond angles [°]			
Se2-Se1-Se3	59.74(2)		
Se3-Se2-Se1	60.13(2)		
Se1-Se3-Se2	60.13(2)		

three metal sites, it is less probable that Se_3^{2-} is the oxidation state of the ligand.

A number of catena-polychalcogenide complexes have been reported. [14, 15, 16, 17] For example, Ibers et al. found $[V_2(\eta^2\text{-Se}_2)_2(\mu-\eta^2\text{Se}_2)_2(\text{Se}_5)]^{2-}$ to have a pentaselenide bridging ligand with different Se–Se bond lengths (2.453(3), 2.360(3), 2.339(3), and 2.431(3) Å). [14] There are only a few examples of fully characterized complexes that have a *cyclo*-trichalcogen.

Novel cyclo-Te₃²⁺ ligands were found in the mononuclear molybdenum complex, $[Mo(CO)_4(\eta^3-Te_3)]^{2+[18]}$ and tungsten complex, $[W(CO)_4(\eta^3-Te_3)]^{2+.[19]}$ As another example of a cyclo-polychalcogen complex, [Te₄Nb₃O(Te)₂I₆]⁺, is found in the literature and has Te₄⁴⁺ as a bridging ligand.^[20] Rozière et al. have reported the complex $W_2(CO)_{10}Se_4^{2+}$, which has a Se₄²⁺ core and is regarded as the dimer of W(CO)₅Se₂⁺, based on the two different Se-Se bond lengths (2.208 (1) and 3.017(1) Å).[21] In the literature, neutral cyclo-Se₇ is found in $[Re_2I_2(CO)_6(Se_7)]$, in which the Se–Se bond lengths are in the range 2.309 – 2.346 Å with the exception of 2.558(3) Å for the bridging Se-Se bond.[22] A bicyclo-Se₁₀²⁻ is found in [Ph₃PNPPPh₃]Se₁₀ • DMF, in which the Se-Se bond lengths are 2.31-2.46 Å with two exceptions of 2.572(3) and 2.759(3) Å.[23] The novel cyclo-Te₄ is found in $[Te_4{Cr(CO)_5}_4].^{[24]}$

Complex 7 seems to consist structurally of 3 and a half unit of 4. In a reaction solution, 7 was formed via the intermediate complexes 3 and 4 by replacing the chloride ligands of 2 (Scheme 2), as the $^{31}P\{^{1}H\}$ NMR spectra of the reaction

Scheme 2.

solution showed. A solution of 2 in CD₃CN with aqueous NaPF₆ was sealed in an NMR tube, and the room-temperature aging was monitored by ³¹P{¹H} NMR spectroscopy. After 15 minutes, a broad resonance arising from 3 appeared at δ = 118.98 ppm, whereas the signal from **2** ($\delta = 123.84$, s) was not observed because of the fast replacement of the chloride ligands. As the reaction proceeded further, the signal of 3 decreased, and that of 7 arose and increased. Furthermore, the reaction of 3 with 0.5 equivalents of 4 was examined in CH₂Cl₂ and CH₃CN to confirm the formation of 7' (CF₃SO₃salt of 7) by ³¹P{¹H} NMR spectroscopy as well as X-ray diffraction and elemental analysis. The reaction showed that 3 is the key intermediate for the formation of 7. The cleavage of the Se-Se bond in 4 may be one of the characteristic reactivities of the bridging diselenide ligand, since the sulfur analogue does not show such reactivity.

Experimental Section

All the experiments were carried out under a dry atmosphere of nitrogen or argon by using standard Schlenk techniques, or in a dry N_2 box. Dry solvents were purchased from Kanto chemical Co. [D₃]Acetonitrile was dried over CaH₂ and then distilled by trap-to-trap prior to use. Complexes **3** and **4** were prepared as described in the literatures. [11] The NMR spectra were recorded on a JEOL Lambda 270 spectrometer operating at 270 MHz for ¹H and at 109 MHz for ³¹P. The chemical shifts are reported in δ (ppm) downfield from Me₄Si for ¹H and from H₃PO₄ (85%, external reference)

for ³¹P. Carbon, hydrogen, and nitrogen analyses were carried out on a Perkin-Elmer PE 2400II Elemental Analyzer.

Complex 4: Complex 4 was prepared similarly to the sulfur analogue, as described in the literature. [8] Complex 2 (399 mg, 0.40 mmol) and AgCF₃. SO₂ (417 mg, 1.62 mmol) were dissolved in a mixture of CH₂CN (2 mL) and acetone (4 mL), and the solution was stirred for 3 h at room temperature. The resulting mixture was separated in a centrifuge to remove AgCl, and the supernatant was evaporated to dryness in vacuo. The beige residue was washed with Et₂O (2×10 mL) and THF (10 mL) to give the acetonyl $complex \quad [\{Ru(CH_{3}CN)_{2}(P(OCH_{3})_{3})_{2}](\mu\text{-SeSeCH}_{2}COCH_{3})\{Ru(CH_{3}CN)_{3}-Ru(CH_{3}CN)_{$ (P(OCH₃)₃)₂}](CF₃SO₃)₃. This crude product was dissolved in CH₃CN (2 mL) and was treated with CF₃SO₃H (0.05 mL) with stirring for 1 h at room temperature. After evaporation to dryness in vacuo, the residue was washed with Et₂O (2 × 10 mL) to give 4 as a dark blue powder (609 mg, 0.36 mmol, 90 %). ¹H NMR (270 MHz, CD₃CN): $\delta = 3.84$ (vt, ${}^{3}J_{PH} = 81$ Hz, 36 H; P(OC H_3)₃); ³¹P{¹H} NMR (109 MHz, CD₃CN): $\delta = 115.15(s)$; UV/Vis (CH₃CN): λ_{max} (ε_{max}) = 704 (1.04 × 10⁴), 515 (9.19 × 10²), 338 nm (5.56 × $10^3 \text{ cm}^{-1}\text{M}^{-1}$); elemental analysis calcd (%) for $C_{28}H_{54}F_{12}N_6O_{24}P_4Ru_2S_4Se_2$: C 19.79, H 3.20, N 4.95; found: C 19.59, H 3.07, N 4.63.

Complexes 6 and 7: A degassed solution of NaPF₆ (109.2 mg, 0.65 mmol) in water (10 mL) was added to a solution of 2 (101.6 mg, 0.10 mmol) in CH₃CN (5 mL). After the mixture had been stirred for 3 h at ambient temperature, CH₂Cl₂ (10 mL) was added to separate the organic- and water-soluble compounds. The extracted organic phase was transferred to a

N A+
N, Ru, N
P, Se
Se
Se
Se
N CI N
N
7

Schlenk tube with a syringe. The CH_2Cl_2 solution was concentrated under reduced pressure, then Et_2O (8 mL) was slowly layered onto it. The brown needles of [{Ru-[P(OCH_3)_3]_2(CH_3CN)_3}_2(\rho_1CH_3CN)_3]_2(\rho_1CH_3CN)_4]_2(\rho_1CH_3CN)_4]_2(\rho_1CH_3CN)_3]_2(CH_3CN)(\rho_1CH_3CN)_3]_2(CH_3CN)_3]_2(CH_3CN)_3]](PF_6)_4 (7) were obtained.

Compound 6: After separation of the organic- and water-soluble compounds, the volatile species were removed under reduced pressure, and **6**

was extracted from the residue with CH_2Cl_2 . Recrystallization of the CH_2Cl_2 solution gave analytically pure crystals of **6**. Elemental analysis calcd (%) for $C_{24}H_{54}F_{18}N_6O_{12}P_7Ru_2Se_2$: C 18.75, H 3.54, N 5.47; found: C 18.70, H 3.45, N 5.35.

Compound 7: After separation of the organic- and water-soluble compounds, the volatile species were removed under reduced pressure. The residue was washed with CH_2Cl_2 , and was recrystallized from CH_3CN/Et_2O to give analytically pure crystals of **7** in 38 % yield. $^{31}P\{^{1}H\}$ NMR (109 MHz, CD_3CN): $\delta = -143.1$ (sept, $^{1}J_{PF} = 704$ Hz, PF_6), 120.9 (d, $^{2}J_{PP} = 71$ Hz), 122.7 (s), 123.8 (d); elemental analysis calcd (%) for $C_{28}H_{69}Cl_2F_{24}N_3O_{18}$. $P_{10}Ru_3Se_3$: C 15.71, H 3.25, N 3.27; found: C 16.23, H 3.21, N 3.53.

The CF₃SO₃ salt of **7**, **7'** was obtained by the reaction of **3** (160 mg, 0.12 mmol) with **5** (104 mg, 0.061 mmol) in CH₂Cl₂ (1.5 mL) and CH₃CN (0.5 mL). Yield: 215 mg (81%); elemental analysis calcd (%) for $C_{32}H_{69}Cl_2F_{12}N_5O_{30}P_6Ru_3S_4Se_3$: C 17.82, H 3.22, N 3.25; found: C 18.01, H 3.20, N 3.39.

X-ray crystallography: Diffraction data for complexes **6** and **7** were collected on a Bruker SMART 1000 CCD diffractometer by using $Mo_{K\alpha}$ radiation with $\lambda=0.71069$ Å. All the intensity data were processed with a SAINT plus program package. Absorption correction was applied to the integrated intensity with a SADABS program. The structure solution was performed with a SHELXTL software package. Details of the two crystallographic analyses are summarized in Table 3. The crystallographic analysis of **7** was also carried out with the analogous procedure described above.

CCDC-151559 (6), 151560 (7), and 178660 (7') contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)1223-336033; or deposit@ccdc.cam.uk).

Table 3. Crystallographic data for 6, 7 and 7'.

	6	7	7′
empirical formula	$C_{24}H_{54}F_{18}N_6O_{12}P_7Ru_2Se_2$	$C_{28}H_{69}Cl_2F_{24}N_5O_{18}P_{10}Ru_3Se_3$	$C_{32}H_{69}Cl_2F_{12}N_5O_{30}P_6Ru_3S_4Se_3$
$M_{ m w}$	1537.58	2140.57	2156.97
T [K]	293(2)	293(2)	124(2)
space group	Pī (No. 2)	$P2_1/n$ (No. 14)	$P2_1/n$ (No. 14)
cell dimensions			
a [Å]	11.7740(10)	12.6862(8)	12.7589(15)
b [Å]	12.4173(10)	24.8375(15)	25.164(3)
c [Å]	12.4381(10)	24.1938(15)	24.145(3)
α [°]	111.0210(10)	90	90
β [\circ]	112.6310(10)	102.7110(10)	102.338(2)
γ [°]	102.436(2)	90	90
$V[\mathring{A}^3]$	1428.9(2)	7436.5(8)	7573.3(16)
Z	1	4	4
λ [Å]	$0.71073 (Mo_{Ka})$	$0.71073 \; (Mo_{Ka})$	$0.71073 (Mo_{Ka})$
$d_{\rm calcd} [\rm gcm^{-3}]$	1.787	1.912	1.892
$\mu [\mathrm{mm}^{-1}]$	2.108	2.474	2.445
observed reflns.	4129	8410	11293
$R1^{[a]}[I > 2\sigma(I)]$	0.0647	0.0356	0.0507
$wR2^{[b]}[I > 2\sigma(I)]$	0.1791	0.0500	0.1207
R1 (all data)	0.0928	0.1069	0.0970
wR2 (all data)	0.1980	0.1148	0.1380
GOF ^[c]	1.001	1.022	0.897

[a] $R1 = \Sigma(||F_o| - |F_c||)/\Sigma|F_o|$. [b] $wR2 = [\Sigma w(F_o^2 - F_c^2)/\Sigma w(F_o^2)^2]^{1/2}$. [c] $GOF = [\Sigma w(F_o^2 - F_c^2)/\Sigma (n-p)]^{1/2}$, in which n = number of reflections and p = number of parameters.

Acknowledgements

The financial support of CREST from the Japan Science and Technology Corporation and the Grant-in-Aid for COE Research, Ministry of Education, Culture, Sports, Science and Technology (MEXT) are acknowledged.

- a) I. Dance, K. Fisher, Prog. Inorg. Chem. 1994, 41, 637; b) J. Wachter, Angew. Chem. 1989, 101, 1645; Angew. Chem. Int. Ed. Engl. 1989, 28, 1613; c) M. Draganjac, T. B. Rauchfuss, Angew. Chem. 1985, 97, 745; Angew. Chem. Int. Ed. Engl. 1985, 24, 742.
- a) J. Zhou, M. J. Scott, Z. Hu, G. Peng, E. Münck, R. H. Holm, J. Am. Chem. Soc. 1992, 114, 10843; b) E. Nordlander, S. C. Lee, W. Cen, Z. Y. Wu, C. R. Natoli, A. Di Cicco, A. Filipponi, B. Hedman, K. O. Hodgson, R. H. Holm, J. Am. Chem. Soc. 1993, 115, 5549; c) L. J. Laughlin, D. Coucouvanis, J. Am. Chem. Soc. 1995, 117, 3118; d) K. D. Demadis, C. F. Campana, D. Coucouvanis, J. Am. Chem. Soc. 1995, 117, 7832.
- [3] a) Z. Zheng, T. G. Gray, R. H. Holm, Inorg. Chem. 1999, 38, 4888;
 b) C. Zhou, R. H. Holm, Inorg. Chem. 1997, 36, 4066;
 c) J.-F. You, G. C. Papaefthymiou, R. H. Holm, J. Am. Chem. Soc. 1992, 114, 2697;
 d) T. D. P. Stack, J. A. Weigel, R. H. Holm, Inorg. Chem. 1990, 29, 3745;
 e) S. Dev, E. Ramli, T. B. Rauchfuss, C. L. Stern, J. Am. Chem. Soc. 1990, 112, 6385;
 f) J. Amarasekera, E. J. Houser, T. B. Rauchfuss, C. L. Stern, Inorg. Chem. 1992, 31, 1614;
 g) C. E. Davies, J. C. Green, N. Kaltsoyannis, M. A. MacDonald, J. Qin, T. B. Rauchfuss, C. M. Redfern, G. H. Stringer, M. G. Woolhouse, Inorg. Chem. 1992, 31, 3779;
 h) D. Coucouvanis, S.-J. Chen, B. S. Mandimutsira, C. G. Kim, Inorg. Chem. 1994, 33, 4429;
 i) W. A. Howard, G. Parkin, J. Am. Chem. Soc. 1994, 116, 606.
- [4] T. Matsumoto, K. Matsumoto, Chem. Lett. 1992, 559.
- [5] a) T. Matsumoto, K. Matsumoto, Chem. Lett. 1992, 1539; b) M. Kawano, C. Hoshino, K. Matsumoto, Inorg. Chem. 1992, 31, 5158; c) K. Matsumoto, H. Uemura, M. Kawano, Chem. Lett. 1994, 1215; d) K. Matsumoto, H. Ohnuki, M. Kawano, Inorg. Chem. 1995, 34, 3838; e) K. Matsumoto, Y. Sano, M. Kawano, H. Uemura, J. Matsunami, T. Sato, Bull. Chem. Soc. Jpn. 1997, 70, 1239; f) K.

- Matsumoto, Y. Sano, *Inorg. Chem.* **1997**, *36*, 4405; g) T. Koyama, Y. Koide, K. Matsumoto, *Inorg Chem.* **1999**, *38*, 3241; h) K. Matsumoto, T. Koyama, Y. Koide, *J. Am. Chem. Soc.* **1999**, *121*, 10913.
- [6] K. Matsumoto, H. Uemura, M. Kawano, Inorg. Chem. 1995, 34, 658.
- [7] M. M. Hossain, Y.-S. Lin, H. Sugiyama, K. Matsumoto, J. Am. Chem. Soc. 2000, 122, 172.
- [8] H. Sugiyama, M. M. Hossain, Y.-S. Lin, K. Matsumoto, *Inorg. Chem.* 2000, 39, 3948.
- [9] J. Mizutani, K. Matsumoto, Chem. Lett. 2000, 72.
- [10] K. Matsumoto, T. Matsumoto, M. Kawano, H. Ohnuki, Y. Shichi, T. Nishide, T. Sato, J. Am. Chem. Soc. 1996, 118, 3597.
- [11] H. Sugiyama, T. Watanabe, K. Matsumoto, Chem. Lett. 2001, 306.
- [12] H. Sugiyama, Y.-S. Lin, K. Matsumoto, Angew. Chem. 2000, 112, 4224; Angew. Chem. Int. Ed. 2000, 39, 4058.
- [13] The reaction was carried out according to the previous report (ref. [10]) for the preparation of [{Ru[P(OCH₃)₃]₂(CH₃CN)₃}₂(μ-S₂)]-(CF₃SO₃)₃ by using NaPF₆ instead of NaCF₃SO₃.
- [14] C.-N. Chau, R. W. M. Wardle, J. A. Ibers, Inorg. Chem. 1987, 26, 2740.
- [15] L. C. Roof, W. T. Pennington, J. W. Kolis, *Inorg. Chem.* **1992**, *31*, 2056.
- [16] J. W. Kolis, Coord. Chem. Rev. 1990, 105, 195.
- [17] M. G. Kanatzidis, S. P. Huang, Coord. Chem. Rev. 1994, 130, 509.
- [18] A. Seigneurin, T. Makani, D. J. Jones, J. Rozière, J. Chem. Soc. Dalton Trans. 1987, 2111.
- [19] R. Faggiani, R. J. Gillespie, C. Campana, J. W. Kolis, J. Chem. Soc. Chem. Commun. 1987, 485.
- [20] W. Tremel, J. Chem. Soc. Chem. Commun. 1992, 126.
- [21] C. Belin, T. Makani, J. Rozière, J. Chem. Soc. Chem. Commun. 1985, 118
- [22] A. Bacchi, W. Baratta, F. Calderazzo, F. Marchetti, G. Pelizzi, Angew. Chem. 1994, 106, 206; Angew. Chem. Int. Ed. Engl. 1994, 33, 193.
- [23] D. Fenske, G. Kräuter, K. Dehnicke, Angew. Chem. 1990, 102, 420; Angew. Chem. Int. Ed. Engl. 1990, 29, 390.
- [24] O. Blacque, H. Brunner, M. M. Kubicki, B. Nuber, B. Stubenhofer, J. Wachter, B. Wrackmeyer, Angew. Chem. 1997, 109, 361; Angew. Chem. Int. Ed. Engl. 1997, 36, 351.

Received: February 22, 2002 Revised: July 24, 2002 [F3895]